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 The output of a deep learning model delivers different predictions 
depending on the input of the deep learning model. In particular, the 
input characteristics might affect the output of a deep learning model. 

 In this paper, we propose a visualization system that can analyze deep 
learning model predictions according to the input characteristics with air 
pollution data. 

 The input characteristics include space-time and data features, and we 
apply temporal prediction networks (LSTM, GRU), and spatiotemporal 
prediction networks (ConvLSTM) as deep learning models. 

 We interpret the output according to the characteristics of input to show 
the effectiveness of the system.
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Selected 
features Model Time lag 

(hrs) Accuracy(%)

𝑃𝑀 .𝑃𝑀 GRU
6 30.585

24 10.411
72 27.137

LSTM
6 29.479

24 17.04
72 27.777

𝑃𝑀 .
Temperature

Humidity

GRU
6 54.648

24 57.049
72 50.102

LSTM
6 50.9

24 40.436
72 17.114

ConvLSTM 6 78.084

 Air pollution data was collected from 413 discrete stations in Seoul. The 
collected data include 𝑃𝑀 . , 𝑃𝑀 , noise, temperature, and humidity, 
and we utilize data measured every hour for 75 days from September 5, 
2019, to November 18, 2019.
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Table1. MAPEs of the deep learning models

Visualization systemVisualization system

61% ≤ Accuracy < 80%

41% ≤ Accuracy < 60%

21 ≤ Accuracy < 40%

Models accuracy (d)

0 ≤ Accuracy < 20%

81% ≤ Accuracy < 100%

Prediction (f), 
Ground truth (g)

Min Max
Standard deviation (i)

Min Max

Residual (h)

Min Max

High - Low

Low - High

Low - Low

LISA (b), (j)

Not significant

High - High

 In this paper, we proposed a visualization system that can analyze deep learning 
models. We proposed an approach to select the appropriate features and deep 
learning model by analyzing correlations, spatial correlations, and temporal 
correlations for spatiotemporal data prediction with air pollutant dataset. 

 During the modeling process, we can improve our understanding of the data
and explore the deep learning models efficiently.
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Figure 3. A visualization system for analyzing deep learning models

 (f): Interpolated predictions with the nearest neighbor algorithm

 (g): Ground truth data

 (h): The errors between the observed data and predictions

 (i): The standard deviation of prediction over time

 (k): The box plots show temporal predictions with the actual observed values

 (a): The scatterplot shows the correlation between input variables and probability distribution

 (b), (j): Spatial autocorrelation (the LISA visualization)

 (c): Temporal autocorrelation

 (d): The Sankey diagram supports the modeling of the spatiotemporal prediction by combining
features, deep learning models, and interpolation models

 (e): Our prediction modeling parameter settings

Deep learning modeling based on the correlationDeep learning modeling based on the correlation

Figure 2. Temporal 
autocorrelation for all variables

 The results are summarized Table 1. 
The MAPE of the ConvLSTM with the 
three features and 6 hours time lag is 
lower than the ones of the GRU and 
LSTM networks.

 We can refer to Figure 3 (b) to see why 
the predictive performance is better 
when using a model reflecting the 
spatial information. In (b), Moran's I 
for 𝑃𝑀 .  is 0.5382, which shows a 
relatively significant spatial correlation.  

 Since 𝑃𝑀 .  has significant spatial 
autocorrelation, we can see that 
predictive performance is better when 
considering spatial information.

 We can see that different temporal autocorrelation patterns 
appear for each variable in figure 2.

 As shown in Figure 1, 𝑃𝑀 has the highest correlation with 𝑃𝑀 . . Therefore, we can attempt to predict 𝑃𝑀 . by inserting 𝑃𝑀 . and 𝑃𝑀 features together in the GRU network and the 
LSTM network.

 When we reconsider the feature selection, we need to identify 
the problem with the selected features. If duplicate or nearly 
similar information is included in the input, the information 
may be insignificant in the prediction.

 Therefore, we train 𝑃𝑀 . again with temperature and humidity 
features, which have high linear coefficients next to 𝑃𝑀 .

 Second, we fix the selected features and apply ConvLSTM.
Figure 1. Scatter plot
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