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ABSTRACT

The output of a deep learning model delivers different predictions
depending on the input of the deep learning model. In particular,
the input characteristics might affect the output of a deep learning
model. In this paper, we propose a visualization system that can
analyze deep learning model predictions according to the input char-
acteristics with air pollution data. The input characteristics include
space-time and data features, and we apply temporal prediction
networks (LSTM, GRU), and spatiotemporal prediction networks
(ConvLSTM) as deep learning models. We interpret the output ac-
cording to the characteristics of input to show the effectiveness of
the system.

Index Terms: Human-centered computing—Visualization—
Visualization design and evaluation methods

1 INTRODUCTION

Spatiotemporal data contain feature information, such as temporal
and spatial information at the same time [3]. However, modeling a
prediction model of spatiotemporal data is challenging because each
field has a different degree and type of spatiotemporal correlation
and complexity [2]. To solve this problem, a deep learning model
has been studied that learns temporal and spatial patterns and makes
predictions. Many studies have been conducted to predict spatiotem-
poral data with Gated Recurrent Units (GRU) networks and Long
Short Term Memory (LSTM) networks [4–6]. GRU and LSTM
are networks with the structure of recurrent neural network (RNN),
and trained with historical sequence information. we propose a vi-
sualization system that can analyze deep learning models with air
pollution data, one of the spatiotemporal data. The proposed system
visualizes the predictions according to the input characteristics. The
input characteristics include space-time and data features, and we
apply temporal prediction networks (LSTM, GRU), and spatiotem-
poral prediction networks, Convolutional LSTM ( ConvLSTM). We
interpret the output according to the characteristics of input to show
the effectiveness of the system.

2 SYSTEM EVALUATION

In this paper, we compare the performances of deep learning models
to predict air pollutant data as spatiotemporal data. We utilize air
pollutant data provided by kweather [1]. Data was collected from
413 discrete stations in Seoul. The collected data include PM2.5,
PM10, noise, temperature, and humidity, and we utilize data mea-
sured every hour for 75 days from September 5, 2019, to November
18, 2019. We separated the datasets into the training dataset, validate
dataset and test dataset at the ratio of 7: 1.5: 1.5. In this paper, we
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design PM2.5 prediction models using these datasets and compare
the PM2.5 prediction performances depending on th data feature
selection and model selection.

Deep learning for temporal forecast has been examined focus-
ing on RNN, and representative algorithms are LSTM and GRU.
ConvLSTM is a network structure that can be employed to predict
spatiotemporal data by applying convolution LSTM structure. In this
paper, we choose LSTM and GRU as temporal prediction algorithms
and ConvLSTM as a spatiotemporal prediction algorithm. We pre-
dict PM2.5 with temporal and spatiotemporal deep learning models.
Then, we calculate the mean absolute percentage error (MAPE) from
the test dataset as a measure of the performance of the model.

Our spatiotemporal data prediction modeling system, as shown
in Figure 1 is a web-based application developed under the Flask
framework and D3.js. Figure 1 presents our air pollutant prediction
modeling system that enables us to compare spatiotemporal data
prediction models and investigate the prediction performances. In
Figure 1 (a), the scatterplot shows the correlation between input
variables and probability distribution. The system visualizes spa-
tial autocorrelation in (b), and temporal autocorrelation in (c). The
Sankey diagram supports the modeling of the spatiotemporal predic-
tion by combining features, deep learning models, and interpolation
models, as shown in Figure 1 (d). (e) presents our prediction model-
ing parameter settings. Our system supports three time lags as an
input time range, including 6, 24, and 72 hours. (f) presents interpo-
lated predictions with the nearest neighbor algorithm. (g) shows the
observed data. (h) presents the errors between the observed data and
predictions. (i) shows the standard deviation of prediction over time.
(j) presents the LISA visualization. The box plots in Figure 1 (k)
show temporal predictions with the actual observed values.

As shown in Figure 1 (a), the Pearson correlation coefficient
between PM2.5 and PM10 is close to 1, and the scatter plot shows the
strong linear correlation, which confirms that PM10 has the highest
correlation with PM2.5. Therefore, we can attempt to predict PM2.5
by inserting PM2.5 and PM10 features together in the GRU network
and the LSTM network. The results are summarized in first row of
Table 1.

We can try two things to improve the performance of the GRU and
LSTM. First, the models are fixed with GRU and LSTM and reselect
features for the training. Second, we fix the selected features and
apply another model, such as the ConvLSTM. When we reconsider
the feature selection, we need to identify the problem with the
selected features. The selected features, PM10 and PM2.5, have a
strong linear relationship. If duplicate or nearly similar information
is included in the input, the information may be insignificant in the
prediction. Therefore, we train PM2.5 again with temperature and
humidity features, which have high linear coefficients next to PM10.
The results are summarized in second row of Table 1.

The MAPE of the ConvLSTM is lower than the ones of the GRU
and LSTM networks. We can refer to Figure 1 (b) to see why the
predictive performance is better when using a model reflecting the
spatial information. In (b), Moran’s I for PM2.5 is 0.5382, which
shows a relatively significant spatial correlation. Since PM2.5 has
high spatial autocorrelation, we can see that predictive performance
is better when considering spatial information. We train the Con-
vLSTM with three features, including temperature, humidity, and
PM2.5. The result of ConvLSTM with the three features and 6 hours



Figure 1: A visualization system for analyzing deep learning models.
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(c)
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Figure 2: The visualizations of PM2.5 predictions trained with lstm,
including humidity, temperature, and PM2.5. (a), (b), and (c) present
the result of time lags 6 hours, 24 hours, and 72 hours, respectively.

time lag is 78.084%. After reselecting the features, we can see that
predictive performance becomes better. We then explore how signif-
icant the spatial information of a feature can affect the prediction in
Figure 2.

3 CONCLUSION

In this paper, we proposed a visualization system that can analyze
deep learning models. We proposed an approach to select the appro-
priate features and deep learning model by analyzing correlations,
spatial correlations, and temporal correlations for spatiotemporal
data prediction with air pollutant dataset. We have attempted to inter-
pret the prediction results for each case as we have stepped through
the changes of features, time lags, and deep learning models. The
proposed system enables deep learning modeling with spatiotempo-
ral data and supports to interpret the causes for the results. During
the modeling process, we can improve our understanding of the data
and explore the deep learning models efficiently.
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Table 1: Prediction accuracy of different time lags and models with
PM2.5, PM10, temperature, and humidity.

Seleted features Model Time lag(hrs) Accuracy(%)

PM2.5

PM10

GRU
6 30.585
24 10.411
72 27.137

LSTM
6 29.479
24 17.04
72 27.777

PM2.5
Temperature

Humidity

GRU
6 54.648
24 57.049
72 50.102

LSTM
6 50.9
24 40.436
72 17.114

ConvLSTM 6 78.084

by the Korea government(MSIT) (2019-0-00795, Development of
integrated cross-model data processing platform supporting a unified
analysis of various big data models) and (2019-0-00374, Develop-
ment of Big data and AI based Energy New Industry type Distributed
resource Brokerage System).
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